

Short course .:. Designing SAG Circuits

Day 1 (4 h)

- Introduction $(\frac{1}{2}h)$
 - course outline
 - flow sheet options for SAG circuits
 - particle size distributions
 - geological factors that influence grinding

• Motors & drives (1h)

- definitions and electrical systems
- gearless drives & gear drives
- variable speed
- electrical efficiency in electrical networks
- three-phase power concepts
- how to read a motor name-plate
- Mills, liners, lifters and pulp discharge (1h)
 - intent and concepts
 - face angles and ball trajectory
 - lifter wear and ball trajectory
 - prediction of wear rates
 - trading off liner life versus process performance

• Grindability test work (1h)

- Sample selection
- Composites versus variability
- Laboratory tests
- Operating work index

Population balance modelling for grinding (½ h)

- intent and objectives
- types of population balance models (JK SimMet, MolyCop Tools)

Day 2 (4.5 h)

- Power models for grinding (3h)
 - intent and objectives
 - modelling of grinding by "power models"
 - using power models for prediction of throughput
 - calibrating models for an operating plant (grinding power and specific energy)

• Throughput forecasting, geostatistics (1¹/₂ h)

- how to design a sampling program (variability and composites)
- choosing a design basis for conceptual circuit design
- power-based versus population balance